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Abstract

We combine an adaptive moving mesh method with an adaptive mesh refinement

(AMR) algorithm using a hierarchical locally refined nested grid to improve the effi-

ciency and accuracy of numerical methods for solving evolutionary partial differential

equations in one space dimensions. The local mesh velocity is defined to allow the

mesh to track fronts and other dynamic features in the solution. Hierarchical nested

grids locally adapt to resolve the spatial features in the solution. The nested grid data

structure is also used to locally refine the grid in time. Small time steps are taken on

the refined grids and imbedded in the larger time steps taken on the coarser grids. We

propose and compare several approaches to provide explicit control over the minimum

spacing for the adaptive moving mesh. Numerical experiments are presented to show

the effectiveness of our method.

Keywords: Adaptive mesh refinement, moving mesh, numerical methods, partial dif-

ferential equations.
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1 Introduction

The moving mesh (MM) method and adaptive mesh refinement (AMR) method using lo-

cally refined nested grids are both effective strategies for adaptively solving partial differ-

ential equations (PDEs). In this paper we investigate how to combine these two powerful

approaches where the spatial accuracy is maintained by local mesh refinement with a hier-

archical data structure.

In [16], an efficient MM method is combined with a static rezone (SR) method based on

equidistributing the error estimate on a single (nonhierarchical) global grid. The global data

structure for the combined MM-SR method is simple and easy to manage, but the time steps

are limited by the smallest grid spacing when implemented via explicit time integration.

When using an AMR hierarchical spatial grid, the MM method must define the grid

velocities consistently on all of the levels to prevent the grid from crossing. When the grid

is stationary in 1D, the hierarchical data structure can change back to a linear structure

[17]. Although this allows more control to prevent the mesh from crossing, it introduces the

difficult problem of constructing the base grid of the hierarchical data structure from the

information in the linear structure of the MM. These difficulties can be avoided by directly

incorporated the hierarchical data structure of AMR into the linear structure of the MM.

We achieve this by treating each patch in the AMR hierarchical data structure as a separate

problem on a single grid with prescribed moving boundaries. The mesh velocities are then

constrained to keep the mesh points within the boundary of the moving patch.

When solving a PDE on a single grid if the grid spacing becomes extremely small, then

a global time step for an explicit integration method is limited by stability, not accuracy

considerations. Within the AMR nested grid framework we can avoid this problem by using

the local time steps commonly used in AMR methods and developing an explicit MM method

that can be applied independently on each grid level. Then we treat the mesh position as

another solution variable in our AMR algorithm and data structure developed in [17], and

compute the mesh velocity for each mesh point by the explicit MM method.

1.1 Gropp’s Method

In [8], Gropp proposed another MM-AMR strategy which moves the whole patch as a single

unit instead of giving each node a velocity and moving them separately within the patch.

Gropp’s approach eliminates the possibility of the mesh crossing and, in fact, each patch

could remain locally uniform. In [8], the velocity of the patch is specified by the user. For

simple problems, where the dynamics of the solution can be anticipated, this is a reasonable,

effective and simple strategy. However, for a complex systems of equations, velocity of the

patch should be determined dynamically.
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A mesh velocity for each node could first be determined by a standard MM method

based on equidistributing an error estimate of the spatial error. These velocities could then

be averaged to define a single velocity to the patch. Unfortunately, in numerical experiments,

this simple approach has not resulted in a good adaptive strategy.

A difficulty with this approach arises when different patches with different velocities

collide and produce overlapping grids. Handling the overlapping grids adds significant com-

plexity to the approach, particularly if each grid has a different velocity. The simple solution

[8], forcing them to have the same velocity, is not appropriate when the patches are moving

in different directions.

Also, the data structure is complex because the node positions of the grids on different

levels may not coincide with each other. Because the fine grids do not align with the coarser

levels, the regridding and projection steps (see [17]) require more interpolation rather than

just copying the solution from different patches.

1.2 Explicit Time Integration

The refined regions with small grid spacing that accompanies most adaptive MM methods

(see [11]) and the equation that controls the MM results in a stiff system of differential equa-

tions. When the mesh spacing can become extremely small, most efficient general purpose

MM methods and software use implicit temporal integration methods. The computational

cost, storage and memory requirements to solve the nonlinear system for the implicit method

usually dominates the cost of these computations.

Explicit integration methods have more stringent stability requirements, but require much

less storage and are more efficient than implicit methods for nonstiff systems. For PDEs,

the Courant-Friedrichs-Lewy (CFL) condition limits the maximum size of the time step for

an explicit integration method to be proportional to the minimum grid spacing. Because

the CFL condition is in the reference frame of the MM, when there are isolated waves in a

hyperbolic PDE the condition is not as severe as pointed out by Bell and Shubin [4], than

in static mesh methods. However, when there are multiple characteristic velocities going in

different directions, then the time step size can still be required to be extremely small. An

advantage of MM methods for hyperbolic conservation laws is that some numerical schemes,

such as the Godunov scheme [7], have better resolution when the shocks are nearly stationary.

Most of the shock-capturing schemes also contain logical operations and are not suitable

for implicit temporal integration.

When only a small portion of the region has a fine grid, it is inefficient to integrate all

the grid points with the same time step. To improve the efficiency of the MM-AMR method

exploit the AMR hierarchical data structure and take separate time steps on the fine and

coarse grids. Even when using this hierarchical time stepping, the explicit integration method
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for the MM method will be inefficient unless we restrict the minimum spacing on the coarse

grid.

To improve the efficiency of explicit MM methods one can set a relatively large minimum

spacing so that the space interval will stop shrinking as soon as it reaches the minimum

spacing. The length of the minimum spacing depends on what resolution you want to

resolve the fine scale structure. The control of the minimum spacing should have minimal

affect on the MM when there is no chance the minimum spacing will be violated on a time

step. We will propose two strategies to control the minimum spacing and discuss how they

can be applied to MM method and AMR data structure.

After reviewing the basic ideas of MM methods, we discuss and compare the accuracy of

exploit integration methods for MMmethods. We then describe how we restrict the minimum

and maximum grid spacing. Next we describe the AMR hierarchical data structure used to

separate the fine and coarse grids. Finally, we illustrate the effectiveness of the MM-AMR

methods in numerical experiments.

2 Overview of MM methods

We will describe the MM method for systems of one-dimensional initial value PDEs

ut = f(u, x, t), x ∈ [x0, xN ]. (1)

Here the subscripts indicate partial derivative operators, and f is a spatial differential oper-

ator (e.g., f = uxx for the heat equation).

In a moving reference frame at the mesh point xi(t), the solution ui(t) = u(xi(t), t)

satisfies the equation

u̇i(t) = ut(xi(t), t) + ux(xi(t), t)ẋi = f(u, x) + uxẋ. (2)

In the time variation (TV) approach (see [13, 14, 21, 16]) the goal is to move the mesh

points so that in the reference frame of the MM the solution is slowly varying and larger

time steps can be taken without compromising accuracy. In this approach the grid velocity

ẋ is chosen to minimize the time rate of change of u and x in the new coordinates,

min
ẋ
[|u̇|2 + α|ẋ|2] = min

ẋ

[∑
u̇2 + αẋ2

]

= min
ẋ

[∑
(ut + uxẋ)

2 + αẋ2
]
.

Solving this quadratic in ẋ at each mesh point for the minimum gives

ẋ =
−f(u, x, t) · ux

α + ux · ux

. (3)
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The mesh can also be moved to reduce spatial errors using the equidistributing mesh (EM)

method. In this approach a mesh function is defined to reflect the local spatial truncation

error of the PDE. The EM approach requires smaller time steps but is more robust than

the TV method because when integrated with a time integration method that controls the

temporal truncation errors, the combined method provides a direct control over truncation

errors in both time and space (see the review [9] and its references).

Most of the analysis and implementations of the EM-MM method map the solution

from the nonuniform moving grid (x) in the physical coordinates to a uniform grind in

the stationary computational coordinates (ξ). By introducing a coordinate transformation

x 7−→ ξ, the uniform mesh methods can be used as usual in the computational domain,

though the grid is nonuniform in the physical domain. Often the computational grid is

chosen based on a mesh function such as the arclength of the solution, i.e.

ξ = ξ(x, t) =
∫ x

x0

√
1 + u2

xdx/θ, θ =
∫ xN

x0

√
1 + u2

xdx. (4)

for a grid with N + 1 mesh points. The inverse transformation is x = x(ξ, t) and the total

time derivative of u(x(ξ, t), t) is

u̇ = ut + uxẋ = f(x, u) + uxẋ. (5)

as in Eq. (2).

After the transformation, we compute the value of u on the uniform computational grid

{ξ0, ξ1, · · · , ξN , }, corresponding to the nonuniform physical grid

{x0, x1, ..., xn} = {x(ξ0, t), x(ξ1, t), · · · , x(ξN , t)}.

Because the grid spacing in the computational domain is uniform the change in ξ is equidis-

tributed between the mesh points

ξ(xi, t)− ξ(xi−1, t) = ξ(xi+1, t)− ξ(xi, t) =
θ

N
. (6)

This approach works for general positive monitor functions M(x, u), where Eq. (6) is

equivalent to

∫ xi(t)

xi−1(t)
M(x, t)dx =

∫ xi+1(t)

xi(t)
M(x, t)dx, i = 1, 2, · · · , N − 1 (7)

or into discrete form

gi =Mi− 1

2
(xi − xi−1)−Mi+ 1

2
(xi+1 − xi) = 0, i = 1, 2, · · · , N − 1. (8)

We now describe some approaches to define a mesh velocity where the equidistributing

mesh given by Eq. (8) is global attractor for the ED-MM methods.
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3 MM Methods

3.1 TV-MM method

The local TV mesh velocities defined by Eq. (3) may not vary smoothly along the mesh

and generates rough irregular grids. Figure 3.1 shows the TV mesh velocity for the solution

of Burgers’ equation (which we consider in more detail in Section 6). Notice that the mesh

-1
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0.5
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1.5

0 0.2 0.4 0.6 0.8 1

solution
xt--before smth
xt--after  smth
xt--after regul

Figure 3.1: The mesh velocity ẋ computed by time variation approach can be very rough. The original

mesh velocity (+) is shown after smoothing (9) (box) and regularization by (19) (cross).

velocities defined by Eq. (3) changes rapidly where ux ≈ 0. We have observed that solutions
˜̇x of the second order boundary value problem

˜̇x− λ(˜̇x)xx = ẋ, (9)

are a reliably smooth mesh velocities. Here ˜̇x is the new mesh velocity, and λ is a parameter

that controls the smoothness of the mesh velocity ẋ. This approach also gives us explicit

control over the local change in the mesh velocities. In particular, the smooth mesh velocity

generated by Eq. (9) is shown in Fig. 3.1. Furthermore [12] if

λ = κ(κ+ 1),

then
κ

κ+ 1
≤

ẋi

ẋi+1

≤
κ+ 1

κ
, ∀i.
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The TV approach is not sensitive to spatial errors [16] and may distribute the mesh

points so the solution is not well approximated in space. This can be fixed by redistributing

the mesh points based on the equidistributing principle.

3.2 ED-MM method

For the ED-MM method, we formulate a differential equation with Eq. (8) as a steady state

attractor. The simple MM method [1],

ẋi = −
1

τ
(Mi− 1

2
(xi − xi−1)−Mi+ 1

2
(xi+1 − xi)), (10)

does this where τ is the time scale that determines how fast the mesh tends to the equidis-

tributing mesh. The MMPDE5 of Huang, et al. [10], is an equivalent formulation and

has been found not to be effective as other better scaled methods such as MMPDE6. A

discretized form of MMPDE6 is

−ẋi+1 + 2ẋi − ẋi−1 = −
1

τ
(Mi− 1

2
(xi − xi−1)−Mi+ 1

2
(xi+1 − xi)), (11)

which yields a tri-diagonal system for the mesh velocity.

3.3 Hyman-Larrouturou ED-MM method

Hyman and Larrouturou propose another equidistributing mesh method [14], which considers

the velocity of intervals.
∆ẋi+ 1

2

∆xi+ 1

2

=
β

τ

m−mi+ 1

2

m+mi+ 1

2

, (12)

where mi+ 1

2
is the value of the mesh function in the interval [xi+1, xi] and is related to the

monitor function mi+ 1

2
=Mi+ 1

2
∆xi+ 1

2
., m is the global average value of m, and β determines

the relaxation time with respect to the problem time-scale τ . Equation (12) limits the

relative mesh velocity to ±β/τ . Because

N−1∑

0

∆ẋi+ 1

2
= ẋN − ẋ0 = 0, (13)

when the value of the local mesh function is less than the average, the interval will increase

otherwise, it will decrease.

To normalize Eq. (12) to insure Eq. (13) is satisfied, we solve the modified equation

∆ẋi+ 1

2
=

β

τ

m−mi+ 1

2

m+mi+ 1

2

∆xi+ 1

2
+ ε, (14)

where

ε = −
∑
(
β

τ

m−mi+ 1

2

m+mi+ 1

2

∆xi+ 1

2
)/N,

Because ẋ0 = 0, the mesh velocity can be explicitly solved for recursively in Eq. (14)
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3.4 Dorfi-Drury MM method

The Dorfi and Drury method [5] solves Eq. (9) for the mesh concentration ni = 1/∆xi

and its time derivative ṅi. In this formulation, it is difficult to solve for the mesh velocity

explicitly. However, because the method is equivalent to globally smoothing the monitor

function M(x, u) ( [23]), the same mesh velocities can be found by first smoothing the

monitor function by solving the second order equation

M̂ − λM̂xx =M. (15)

Then, using the new monitor function M̂ , computing the mesh velocity by (11) or (14).

Because the smoothness of the grid affects the accuracy of the spatial derivative approx-

imations it is advantageous to generate a smooth monitor function as in the Dorfi-Drury

method (Eq. 15), or by a locally smoothing the mesh function such as

M̂i =
i+p∑

j=i−p

( κ

κ+ 1

)|i−j|
Mj. (16)

This smoothing operator is equivalent to smoothing (15) if p is large enough [23], i.e, the

smoothing is over all of the points. We typically chose p = 1 or 2. If p ≥ 3 then Eq. (15) is

more efficient.

4 Regularization of the Grid Spacing

When using an explicit integration method all MM methods need to prevent the mesh points

from coming too close together and creating severe stability restrictions. Mesh functions that

monitor the mesh regularity [15] indirectly control the mesh spacing in ED-MM methods to

avoid fast relative motions of neighboring mesh points and satisfy prescribed minimum or

maximum mesh spacing.

To maintain a minimum spacing ∆xmin and a maximum spacing ∆xmax, the mesh veloc-

ities should satisfy the following conditions

∆ẋi+ 1

2
=

{
> 0, if ∆xi+ 1

2
< ∆xmin,

< 0, if ∆xi+ 1

2
> ∆xmax.

(17)

4.1 Modified Winkler method

Winkler et al. [24] proposed adding a penalty term to the mesh equation;

˜̇xi = ẋi +


∆xmin
∆xi+ 1

2




4

−


∆xmin
∆xi− 1

2




4

(18)
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to achieve the minimum spacing. Occasionally, even when ∆xi+ 1

2
< ∆xmin, ẋi dominates

the penalty term and ∆ẋi+ 1

2
> 0. This situation is avoided by modifying ∆ẋi+ 1

2
by adding

a penalty term

∆˜̇xi+ 1

2
= ∆ẋi+ 1

2
+max(|∆ẋi+ 1

2
|, 1.0)





∆xmin
∆xi+ 1

2




4

−

(
∆xi+ 1

2

∆xmax

)4

 , (19)

which ensures that the mesh interval will enlarge as soon as it is less than ∆xmin or decrease

when greater than ∆xmax. The power 4 was chosen based on numerical experiments and

allows the mesh to react quickly once the spacing is less than the minimum spacing. The

velocity ẋi or ∆ẋi+ 1

2
can be defined by any moving mesh method discussed in Section 3

and the prefactor max(|∆ẋi+ 1

2
, 1.0)| is to ensure the factor is sufficiently large if |∆ẋ| ≈ 0.

Numerical experiments have verified that Eq. (19) offers better control on the minimum and

maximum spacing than Eq. (18).

To ensure that mesh velocities (19) satisfy (13) they are normalized as in Eq. (14).

Since Eq. (13) cannot be satisfied locally, the regularization (19) may have problem when

combined with the AMR hierarchical structure and algorithms.

4.2 Indirect control by monitor function method

On an ED mesh, the maximum of the monitor function Mmax occurs at the minimum mesh

spacing ∆xmin so that

∆xminMmax = ∆xmaxMmin = m, (20)

where m is the average value of the mesh function and has the same meaning as in (12).

To enforce ∆xmin ≤ ∆x ≤ ∆xmax, Mmax or Mmin can be easily computed from Eq. (20).

Then we enforce these restrictions on the monitor function, so that

Mmin ≤Mi+ 1

2
≤Mmax, ∀i. (21)

This can be achieved by modifying the monitor function as

M̃i+ 1

2
=

Mi+ 1

2
+Mmin

1 +
Mi+ 1

2
+Mmin

Mmax

− ε. (22)

The rescaled mesh function M̃i+ 1

2
has the same monotonicity properties as Mi+ 1

2
and

satisfies condition (21). The scalar ε is chosen so that m is the same after rescaling (22).

This is easily accomplished by first defining M̃i+ 1

2
with ε = 0, then computing ε by enforcing

the sum of mesh function unaltered during the transformation (22).

Although this strategy requires a global variable m, it can be computed locally and taken

as an approximate value to m if a local fine grid is given. We will use it in our hierarchical

data structure.
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5 MM with hierarchical data structure

The minimum grid spacing may have to be small to resolve the solution. If the solution

at all the grid points take the same time step, then small refined region can force a small

time-step even though we could take a larger step size at other grid points without violating

the stability and accuracy restrictions.

The adaptive mesh refinement (AMR) algorithm uses an [3, 2] hierarchical data structure,

in which the fine grid is nested in the coarse grid completely. The AMR method allows us

to separate the fine grid from the coarse grid and do the integration steps separately. The

solution is updated recursively and the coarse grid always has the most accurate solution

(projected from the fine grid) for the next time step. The internal boundaries of the fine

grid are internal nodes of the coarse grid.

The hierarchical data structure allows us to advance the MM grid equations (described

in Sec.3) as just another solution variable. However, the mesh function for spatial refinement

no longer includes the smoothness of the grid, except on the coarsest grid. Because the mesh

moves with the solution, far fewer SRs are needed than for a fixed grid. The AMR refinement

procedure is performed as needed using the data structures described in [17] (based on the

approach described in [3]).

The mesh velocities for the nodes of the base grid are computed using one of the MM

strategies in Section 3. The mesh velocities for the boundary nodes of the fine grid are

interpolated from the immediate (parent) coarse grid. The mesh velocities for the internal

nodes on each finer level should be moved to track the internal features of the solution,

respect the velocities of the boundary points and remain smoothly spaced.

When combined with AMR hierarchical data structure, the mesh velocities must be

computed locally. The MM equations derived with a global normalization step similar to

(13) have difficulty to be applied locally. Similarly, the minimum spacing regularization (19)

must be normalized globally and is difficult to apply to a local patch. The time variation MM

method is local, but the mesh velocities must still be smoothed globally to get a good result.

The MMPDE6 (11) does not require smoothing or normalization and the grid velocities are

local. Therefore, we use MMPDE6 to compute the mesh velocities in our MM-AMR.

The minimum spacing for the finest grid ∆xmin (specified by the user) is used to compute

the minimum spacing for the coarse grid based on the refinement ratio. For example, if the

refinement ratio is r, the minimum spacing for the next finest level grid is r ×∆xmin.

The scalar hyperbolic conservation equation

ut + f(u)x = 0,

in a moving reference frame

u̇+ f(u)x − uxẋ = 0,
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has the CFL time step criterion
|ẋ− fu|∆t

∆x
≤ 1, (23)

where fu denotes the derivative of f with respect to u. The time step can be relatively large

even if ∆x is very small, when the mesh velocity ẋ is close to the characteristic speed fu.

This often happens in scalar problems where |ẋ − fu| ≈ 0 near in a step wave front where

the mesh spacing is very small. However, for systems it is the spectral norm of ||ẋ−fu|| that

determines the CFL condition. When fu is a diagonal operator, this is the maximum of the

difference between ẋ and any of the character velocities. We have only one mesh velocity ẋ

at each node and even the optimal mesh velocity may only have a minimal improvement in

the CFL time step condition when the characteristic velocities are widely separated.

6 Numerical Experiments

We integrate the equation with a second order Runge Kutta method,

ũn+1 = un +∆tf(un),

un+1 =
1

2
(un + ũn+1) +

1

2
∆tf(ũn+1).

where un denotes the solution at the nth time step, and the 3-rd order WENO scheme [20]

for the spatial discretization with specification. The MM methods use a smoothed arclength

monitor function Eq. (9).

6.1 Burger’s equation

Burgers’ equation

ut = −uux + 0.0001uxx, 0 < x < 1, t > 0,

with the initial condition

u(x, 0) = 0.5 sin(πx) + sin(2πx), 0 ≤ x ≤ 1,

is solved with the boundary conditions u(0, t) = u(1, t) = 0.

For all the comparisons, we show the solution at times t = 0.2, 0.6, 1.0, 1,4, 2.0. The

coarsest grid has 50 points and ux in the MM term uxẋ is discretized by first order central

differences. We also supplied a reference solution (dashed line) computed by an implicit MM

method with 601 nodes, and a very strict error tolerance.
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6.1.1 Explicit MM method for a single grid

In the TV-MM we used Eq. (19) to control the minimum spacing. As expected, unless a

static rezone is used with the TV-MM method it fails to adequately resolve the solution.

Even with the static rezone, unless it is done every few time steps, the corner at t = 0.2 will

-1
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0
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1

1.5

0 0.2 0.4 0.6 0.8 1
x

u
xt

Figure 6.2: Result of time variation approach with static rezone after every 100 time steps.

still be under-resolved (see Fig. 6.2). This is partially because the TV-MM does not move

the points to the corner to maintain spatial accuracy during the formation of the shock.

Fig. 6.3-a shows the result of MMPDE6 (11) with τ = 0.5 and minimum spacing control

Eq. (22). Fig. 6.3-e shows the result of MMPDE6 with minimum spacing control (19). Even

though the mesh distribution was similar in Figs 6.3-a and 6.3-e. the integration was more

sensitive to the time scale τ and the smoothness of the monitor function when using (19)

than (22). When τ = 0.05, MMPDE6 fails to solve the problem with Eq. (19), whereas it

has no difficulty with (22). When the monitor function is not smoothed (see Fig. 6.3-c),

the simulation fails when using (19) but still succeeds when using (22). This is because the

monitor function transformed by (22) is smoothed simultaneously (Fig. 6.3-d).

The minimum spacing control is essential to the success of the explicit MM method.

Figure 6.3-b shows how the minimum spacing control smoothes the mesh velocities near the

steep wave front and prevents the mesh from crossing while allowing for large time steps.

The ED-MM methods were insensitive to the time scale τ in (11) or (14) for [0.01, 1.0]

if the monitor function is smoothed by Eq. (15). Fig. 6.3-f shows the results of the Hyman-

Larrouturou formulation (14) with τ = 0.05 and minimum spacing control (22). We observed

that the normalization (13) was needed to keep the mesh from crossing when using the
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Figure 6.3-a: Result of MMPDE6 (11) with
τ = 0.5 and minimum spacing control (22).
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Figure 6.3-b: Result of minimum spacing
control (22) at t = 0.6 for Fig. 6.3-a.
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Figure 6.3-c: Result of MMPDE6 (11) with
τ = 0.5, minimum spacing control (22) and
no smoothing on monitor function.
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Figure 6.3-d: Result of the regularization
(22) at time t = 0.6 for Fig. 6.3-c.
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Figure 6.3-e: Result of MMPDE6 (11) with
τ = 0.5 and minimum spacing control (19).
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Figure 6.3-f: Result of Hyman and Lar-
routurou formulation (14) with τ = 0.05 and
minimum spacing control (22).
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Hyman-Larrouturou Eq. (12).

The normalization (13) must be done globally for the approach (19), because (13) is not

satisfied locally. However, the regularization (22) can be done locally without any difficulty.

Therefore, we use (22) in all of our MM-AMR simulations.

6.1.2 MM-AMR with hierarchical data structure

When using a single nonuniform mesh, the global time step is chosen based on the CFL

conditions for all of the mesh points. In this example, only 1
4
of the mesh points that have a

spacing less than three-fourths of the spacing of the uniform mesh that has the same number

of nodes. An advantage of the AMR hierarchical data structure is that it allows smaller time

steps on the fine scale mesh points.

We use a three-level hierarchical data structure with r = 2. We set the minimum spacing

for the finest grid to 0.001 so the minimum spacing is 0.002 for the second level and 0.004

for the base grid. The integration for each level is done recursively and the time step for the

fine grid is computed based on the CFL condition in that level. The result shown in Fig.

6.4-a is for 50 points in the base grid using the MM method (11) with minimum spacing

control (22). The CPU time cost is 65% of that of a single mesh with 100 grid points without

using the hierarchical data structure. The solution (Fig. 6.4-a) is more accurate than the

MMPDE6 result in Fig. 6.3-e.

The accuracy is maintained even when the number of nodes in the base grid is reduced

to 20 (see Fig. 6.4-b).

The mesh velocity ẋ is not as smooth as before the node positions in the coarse grid are

projected from the fine grid(see Fig. 6.4-c). The mesh velocity for each level at time t = 0.2

is plotted in Fig. 6.4-d.

The smoothness of the mesh velocity can be retained by adopting a relaxed time scale τ .

Fig. 6.5 shows the mesh velocity at t = 0.2 with τ = 1.0.

In our numerical experiments on Burger’s equation we found that although the numerical

solutions were insensitive to τ ∈ [0.1, 1.0], the discontinuity was better resolved if τ increased

with the number of grid points and/or a number of refinement levels.

The numerical error at t = 2.0 (Table 1) was defined by interpolating the numerical

solutions to a fine grid and comparing them to a highly resolved reference solution. The

maximum error is relatively large because of the errors near the discontinuity.

6.2 Euler equations of gas dynamics

The Euler equations for gas dynamics

ρt + (ρu)x = 0,



LA-UR-98-5460 15

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
x

numerical
reference

Figure 6.4-a: Result of MM combined with
the hierarchical data structure. The number
of base grid points is 50. τ = 0.2
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Figure 6.4-b: Result of MM combined with
the hierarchical data structure (τ = 0.1).
The number of base grid points is 20.
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Figure 6.4-c: Mesh velocity computed by
MM-AMR (τ = 0.2)
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Figure 6.4-d: Mesh velocity for each level
at time t = 0.2 (τ = 0.2).

ndx numlev NSTEP L2-err M -err CPU

100 1 2300 0.0061 0.23 7.547

50 2 1178 0.0064 0.22 3.328

25 3 495 0.0073 0.24 2.222

Table 1: Performance comparison for difference numbers of grid points with different refinement levels at

time t = 2.0.

(ρu)t + (p+ (ρu)
2/ρ)x = 0,

et + ((e+ p)(ρu)/p)x = 0,
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Figure 6.5: Mesh velocity for each level at time t = 0.2 (τ = 1.0).

with initial conditions [22]

(ρ, (ρu), e) =

{
(1.0, 0.0, 2.5), if x ≤ 0.5,

(0.125, 0.0, 0.25), if x > 0.5.

is solved by the AMR method in [17]. We solve the equations with the MM-AMR method

with 100 base grid points and three refinement levels. The minimum spacing for the finest

level is 0.001.

In Fig. (6.6-a) the solution decomposes into a shock wave, a contact discontinuity and a

long rarefaction wave. If the arc length monitor is used, more points will be distributed to

the rarefaction wave, which is not necessary and leave the contact and shock under-resolved.

Hence we use the modified curvature monitor in our computations, which is

M(x, u) =
√
α +N(∆ux)2, (24)

where we choose α = 1.0. Numerical results show that this monitor greatly improves the

accuracy at the rarefaction corner, contact discontinuity and shock.

The contact discontinuity is not resolved as well as the shock because the shock is dis-

continuous in all the variables and has more weight than the contact in our mesh function.

We also solved this problem with one refinement level, i.e., pure explicit MM method

without using the hierarchical data structure. The minimum spacing is 0.001. The results
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Figure 6.6-a: MM-AMR method for the shock tube problem. The number of base grid points is 100 with

three refinement levels are used. τ = 1.0.
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Figure 6.6-b: Explicit MM-AMR method for shock tube problem with only one refinement level. The

number of grid points is 100. τ = 0.5

with the time scale τ = 0.5 are shown in Fig. 6.6-b. For this problem the results were even

worse for other values of τ . The single level ED-MM method failed to solve this problem

with τ = 0.2 because of mesh crossing, but the MM-AMR method with three refinement

levels had no problem.

The MM-AMRmethod is more robust and accurate than the single level ED-MMmethod.

The CPU time increases only by 1/2.
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7 Conclusion

We have described several approaches to formulate the MM methods and to control the

minimum or maximum spacing. An improved explicit MM method which exploits the AMR

hierarchical data structure is proposed and demonstrated to be effective in solving Burgers’

equation and Euler equations. The minimum spacing control and hierarchical data structure

overcome the small time-step problems with the explicit MM method.

The MM-AMR introduces the overhead of both AMR and MM method. We had com-

pared the results of the AMR, moving mesh, MM-AMR methods for the same Burgers’

equation. The MM-AMR takes more CPU time than either the MM or AMR method. For

the Euler equations, the MM-AMR is slightly slower than the AMR method but much faster

than the implicit MM method. We also noticed that the reduced time variation by the

mesh moving is not fully-used by our MM-AMR. The time step size is mostly determined by

the stability instead of accuracy. To effectively take the advantages of both AMR and MM

method, an implicit AMR algorithm should be developed.
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